

Whatever Chat™ Report
CS 291A - Scalable Internet Services

Fall 2019
Primary Project

Jose Acuna

Swaroop Srinivasa Rao
Dongyu Meng

Karl Wang

Contents

1 Introduction 3

2 Features 4
Welcome Screen 4
Signup and Login Page 5
Home Page 5
Individual Post 6
New Post 7
Profile 8
Private Message 9
Post Ad Modal 9
Ad Matching 10
Comments 10
Retwitte(yes, the misspelling is on purpose) 11

3 Load Testing 12
Fine grained seeding 12
Tsung Test Framework Setup 12

Transactions 12
Sessions 13

Session 1: Registration 13
Session 2: Unauthorized User 14
Session 3: Authorized User (Passive) 14
Session 4: Authorized User (Active) 15
Session 5: Ad Owners 15

Scenarios 16

4 Optimization 18
Pagination 18
Indexing 19
N + 1 Query Optimization 19
Active Storage vs DB 22
Vertical Scaling 23
Horizontal scaling 25

5 Conclusion 26

2

1 Introduction
No one can deny that the past two decades have been the era of social media and there are no
signs that it will slow down soon. There have been a plethora of social media apps which have
come up over the years, including Facebook, Twitter, Reddit and Instagram. In particular,
Facebook had an estimated 2.45 billion monthly users worldwide in the month of September in
2019. Furthermore, Facebook averages 1.62 billion active users (people who log in to the site
everyday). With these huge and unprecedented amount of traffic that these social media sites
serve everyday, they face the tricky and complicated tasks of scaling and high availability. Thus,
when services fail to keep up with the demand, we see common hashtags such as
#InstagramDown and #TwitterBlackOut.

Our application is WhateverChat - which has a subset of features taken from all these major social
media apps. In this report, we’ll introduce the features we implemented in section 2. However, an
objective for this project is not on how many features can we implement, but how can we make the
application scale better, thus improving performance. So in section 3 we introduce how we utilize
Tsung to perform tests on our application and the significance of the tests. Next, in section 4 we
describe the optimizations we have implemented and explore their performance results. Finally, we
discuss conclusions about the project and lessons learned in section 5.

3

2 Features
The application has features which enable users to create new posts, view posts made by other
users, comment/like/dislike individual posts, retweet a post, view all posts made by a particular
user, send private messages, post ads to the site. In this section, we introduce each feature and
provide screenshots of said feature. The services of Whatever Chat utilize web technologies such
as Ruby on Rails, PostgreSQL, Bootstrap, React, and AWS Elastic Beanstalk.

Welcome Screen

Fig 2.1 Whatever Chat welcome screen

Any user that wishes to use our service will first come to the welcome screen or splash page. Here,
existing users can login using their credentials, new users can sign up. Alternatively, a user may
enter as unauthenticated user, where the functionality of the site will be restricted to merely
viewing and making posts that are visible to all users.

4

Signup and Login Page

Fig 2.2 Whatever Chat sign up and login page

In order to be an authenticated user, one must either login or sign up through the above screens.
Uniqueness of the users are maintained by each user mandatorily having a different username.
New users set their passwords which are salted, hashed, and stored in our database. Existing
users are authenticated when the provided password’s hash matches that in the database. Once
authenticated, the user will be provided a token that must be provided on subsequent requests.

Home Page
The homepage is at the heart of our application. All the links to any other action can be obtained
from this page. It is split into three sections - header, message board, and ads strip. The header
contains the links to other pages that a user might have access to. Authenticated users can see
their profile, check out private messages, post an ad or logout. These actions are labeled as
“Profile, Private Messages, Post Ad, Logout” respectively in Figure 2.3.. Unauthenticated users
will see a similarly styled header, except the only action they may take from the header is to return
to the welcome screen via a “Home” button that replaces the “Logout” button.

The next section is the message board and appears in the center of the screen. This is similar to a
Facebook wall or timeline except that these posts are made visible to all users. Here, a user may
hit the purple button to make a new post. Otherwise, they may view or interact with existing posts
shown in reverse chronological order.

5

Fig 2.3 Whatever Chat homepage (index page)

Finally, our venture has failed to receive any funding so we instead monetize our site using ads
that target the interests of the user. These ads appear in the ad strip on the right side of the page.

Individual Post

Fig 2.4 Whatever Chat example post

6

This is an individual post which is embedded in a Card Bootstrap styling. The post contains a list
of information:

● The title of the post at the top
● The user who authored the post
● When the post was made
● The actual content of the post
● Like/Dislike Counter
● Comments counter / link to view comments
● Option to Retwitte

It’s worth noting that unauthorized users can also make posts. When they do, they choose an alias
to associate with the post. However, you can tell a post was made by an authenticated user if you

can see an avatar icon next to their username. When the username is clicked, one is redirected
to the profile page corresponding to the username. A user may also click on the title of the post or
“view comments” button to see the full post including its comments.

Finally, the timestamp shown on a post is relative to when the post is requested and when it was
made. The granularity starts at “seconds ago” and ends at “weeks ago”.

New Post

Fig 2.5 Whatever Chat example new post

7

A Bootstrap modal popup is shown when user wants to make a new post. The modal popup option
is used so as to give the user a feel of Single Page Application. The form contains the title and the
body of the post to be made.

The option ‘To user’ at the bottom shows whether the post is to be made globally (which can be
seen by everyone) or to a particular user (private message). The ‘To user’ dropdown will be
auto-populated with all the users currently in our system, but with the Global option selected by
default. If a user is unauthenticated, then their forced to post to Global. Once a post is made, the
modal is closed and the home page is refreshed so that new Global posts are made visible.

Profile

Fig 2.6 Whatever Chat profile demonstration

The profile page shows posts made by yourself. In this case, the user is logged in as Alice so the
profile page shows all posts Alice made. The layout of this page is however similar to the
homepage to maintain consistency across all the application.

8

Private Message

Fig 2.7 Whatever Chat private message demonstration

On navigating to the “Private Messages” tab from the header, you can view all the posts which
were sent particularly to you.

Post Ad Modal

Fig 2.8 Whatever Chat Ad posting (modal)

Users can also post ads in our application to be served to other users based on their interests. An
image for the ad is uploaded from their local storage which will then be rescaled before being
displayed to other users. The tags are a comma separated list of words which are used to target
particular users. It is up to the poster to enter tags that correspond to their image or marketing
message.

9

Ad Matching

Fig 2.9 Whatever Chat Ads showing demonstration

The first ad on the right is an ad for coffee. In the example, the user made a post “I just love my
#coffee in the morning”. At which point, the service keeps track of tags users have generated by
using a # in their post’s body. Thus, our ad matching logic will match the users’ tags with an ads
tags and then serve the correct ad image.

Comments

Fig 2.10 Whatever Chat commenting demonstration

Authorized users may post comments to individual posts and also view comments made by other
users. Unauthorized users can only view the comments.

10

Retwitte(yes, the misspelling is on purpose)

Fig 2.11 Whatever Chat “retwitte”

This is a “retwitted” post. The post is marked as “Reposted” and you can also view the original
post by clicking on the ‘see Original’ link. All retwitted posts are treated as new posts made at the
time of the retwitte and can only be posted on the global message board.

11

3 Load Testing

Fine grained seeding

To better test the server under different circumstances, we used different seed sizes (number of
initial records). More specifically, we wrote a custom rake (rails) task to facilitate three seeding
scripts. The scripts map to small, medium, and large seed size respectively. We use small seed size
while developing and switch to large seed(10000 users and posts, 100000 comments and votes)
when performing the final test. We leveraged rails’ new bulk insert feature and managed to finish
this process in seconds.

Tsung Test Framework Setup

To stay flexible with our testing infrastructure, we used a three-layer abstraction to describe the
Tsung tests we ran. Namely, we had transactions, sessions, and scenarios.

A transaction is just a transaction in Tsung world. It serves as a primitive of user behavior, and
can be reused across different user patterns. Examples of transactions include Login, Welcome,
and Registration. For this project, we defined 17 transactions.
A session describes a typical user behavior pattern. It comprises one or more transactions. To this
end, we defined 5 sessions: Registration, Unauthorized User, Passive Authorized User, Active
Authorized User, and Ads Owner. A session here maps to a session in Tsung.
A scenario formalizes a traffic pattern of the website, which results from different make up of user
patterns. Therefore, a scenario naturally has one or more sessions. Each session is assigned with a
probability that describes the proportion of the user pattern it represents. We defined 5 scenarios
to explore server performance from different perspectives. A scenario corresponds to a Tsung
configuration file.

Implementation-wise, we wrote each transaction individually and scribed a bash script to auto
generate sessions and scenarios. In this way, we are able to iterate our definition of sessions as
well as scenarios basically by modifying a shell array.

Now we introduce the three abstraction layers in more details.

Transactions

We defined the following 17 transactions as primitives: comment, downvote, inbox_post,
index_page, login, new_post, post_ad, post_with_tags, profile, registration, retwitte, think, to_me,

12

upvote, view_chat, view_chat_pages, welcome. It covers roughly all the possible interactions a user
could have with our application. Thus, sessions and scenarios just cover many permutations of the
transactions. For some of the transactions, we bundle several consecutive actions into one
transaction (upvote actually votes 5 times on different posts).

As most of the transaction names are quite intuitive, we will not go into gory details of what each
of the transactions is. Instead, we use one example here to demonstrate some catches and cool
features we noticed / used when implementing these transactions in Tsung.

To start with, we noticed that unlike a browser, Tsung does not really do much with the
responses. It does not automatically issue requests for resources like images, does not run Ajax,
and provides no notion of client caching. Therefore, to mimic what clients would actually
experience with a browser, we have to implement some of the mechanisms ourselves.

More specifically, we leveraged tsung-recorder to inspect which requests should actually be made,
and based our transactions on the recording. For example, we show two ads on most of our pages,
but Tsung is not able to make these requests itself. We end up using regex matching on server
response and issuing separate ad requests explicitly.

Apart from this, we managed to upload images with Tsung as well by storing the bin file of the
tsung-recorder and resending that file in our transaction.

Sessions

Session captures user behavior patterns. We used the following 5 sessions in our project. Note in
the flowchart each operation(square) is a transaction.

Session 1: Registration

The rationale for having registration alone as a session is that registration is independent from
normal user activities. Therefore, by having registration as an independent session and tune the
probability properly, we are able to mimic new user behavior by combining registration session
and normal user behaviour sessions.

13

Session 2: Unauthorized User

For many User Generated Content (UGC) info-sharing apps, unregistered users can take up more
than half of the traffic. These users do not contribute content to the app, nor do they voice their
opinions by voting or commenting. In other words, they are ‘read-only’(wink).

In WhateverChat, these users go through the unauthorized channel.

Session 3: Authorized User (Passive)

This type of users also take up massive amount of our backend processing and traffic. These
passive users usually just view posts, upvote/ downvote individual posts, go to different pages and
view more posts.

14

Session 4: Authorized User (Active)

Active (authorized) users are the backbone of a websites. They contribute content, browse existing
content, and connect with each other. As the flowchart above indicates, they spend quite some
time on our site and do basically everything possible. We would like to note again here, some of
the transactions repeat the action several times (e.g. Comment transaction - comments in 5 posts).

Session 5: Ad Owners

One unique (funny) feature for our site is ads. Ads owners can upload new advertisements (image
and corresponding tags) through a designated portal. The pattern for ads owners are different
from normal users. They are less active as well.

15

Scenarios

Scenarios describe site traffic patterns through the lens of user make up. We came up with 5
scenarios to maximize variety . Not all of the scenarios are realistic.

The 5 scenarios are:

Scenarios Registration
Unauthorized

User
Authorized User

(Passive)
Authorized User

(Active)
Ad

Owners

Scenario 1 100% - - - -

Scenario 2 - 100% - - -

Scenario 3 - 50% 50% - -

Scenario 4 5% 40% 35% 20% -

Scenario 5 5% 40% 30% 20% 5%

Among these, we consider scenario 5 as the most realistic one. We will discuss the traffic pattern
of each of the scenarios as experiments unfold.

Fig 3.1 Scenario 1 (left) and scenario 2 (right) - transaction times

16

Fig 3.2 Scenario 3 transaction times

Fig 3.3 Scenario 4 transaction times

Fig 3.4 Scenario 5 transaction times

17

4 Optimization

In this section, we describe the improvements we made to get better performance of our
application. We also include corresponding graphs of our application running with and without the
optimization to compare the performance. This data comes from experiments done using Tsung as
described in the previous section.

Pagination
Over the course of Tsung load testing, the index page of our application will end up fetching many
posts of which a user might view only a handful of posts at a time. The overhead of getting
unnecessary data may render the system slow or even unusable. To solve the problem, we used
Pagination which gets only 10 posts and its related content per page, drastically reducing the DB
Query time and render time per page wherein it now just needs to get the top 10 results from the
database. Additionally, this will also reduce the initial page load time and size of data sent over the
network. The following graph shows the dramatic increase in requests served due to pagination.

Fig 4.1 HTTP response status with and without pagination

As we can see from Figure 4.1, the number of HTTP 200 responses received from the server are
considerably higher with pagination than without pagination.

18

Indexing
By default, Rails just indexes the default id column of each of the tables created. This index
individually simply does not suffice. In fact, we need to create an index on columns which are used
for foreign key references, as these columns are used in joins, and adding indexes on these foreign
keys will improve performance.

We ran scenarios 4 on both indexed and non-indexed version of our app. The following graph
shows how the transaction duration of transaction index_page improve with the introduction of
indexing. For all five phases we considered, the indexed version outperformed the non-indexed
version by at least 4x.

Fig 4.2 Transaction duration of transaction index_page with and without indexing

N + 1 Query Optimization
This a common issue with Rails application, where there’ll be independent queries to the same
table even though all of them could be grouped together to fetch all at once.
For example, In our application, the index page makes a request to get all the posts, but separate
queries are executed to load each of the votes, comments per each post. This is highly unnecessary
as all the comments and likes/dislikes can be loaded with a single query using preloading.

19

Fig 4.3 Index page db queries without query optimization

You can see votes and comments table being referenced multiple times. This can quickly exhaust
the DB Connection pool.

20

Fig 4.4 Index page db queries with query optimization

You can see that all the votes and comments retrieved by the database in one go.

We also tested the performance change under Tsung’s load. With our working deployment, one
page only has 10 posts, making it hard to demonstrate the performance boost from query
optimization. Therefore, here we change the number of posts to 100 just for demonstration. As
shown in Figure 4.5, the response time for index page for non-optimized version is at least 3 times
longer than the optimized version.

Fig 4.5 Transaction duration of transaction index_page with and without query optimization

21

Active Storage vs DB

When storing ads images, we came across two possible solutions. One is to store images in
database and manage them with normal object management logic, the other is to use Active
Storage by rails. Active Storage supports most major file storage platforms and facilities many
basic image processing functionalities. In addition, Active Storage provides a static url for each
image, which helps client-side caching .We were curious about the performance difference between
the two and compared them on scenario 4.

Fig 4.6 HTTP response status code and mean duration of requests with images stored in Active

Storage and images stored in db

From the above graph we see although Active Storage is somewhat disk-based, it was not
outperforming the db solution. On the contrary, the db solution was faster in most cases. We do
note here that Tsung does not provide any notation of client-side caching so this result might be
biased.

22

Vertical Scaling

Fig 4.7 HTTP response status with c5 instance types

The easiest way to scale an application is often to increase the resources available on the
application server. However, as shown in our test, it is not the most efficient way to scale our app.
We tested scenario 4 on three different instance types: c5.large ($0.085/hr), c5.xlarge
($0.17/hr), c5.2xlarge ($0.34/hr), and c5.2xlarge ($0.68/hr).

We observed significant improvement moving from large to xlarge and large to 2xlarge. This is
expected, as each upgrade doubles CPU core count and memory size. However there is almost no
difference between 2xlarge and 4xlarge. We suspect this is due to the max thread limit of 5 set on
puma, which prevents rails from fully utilizing the 16 cores offered by c5.4xlarge.

We also observed that for bigger instance types, 200 response decreases as the load increases. In
contrast, 200 response from smaller instance types increases as the load increases. Given the
extremely long test cases in scenario 4, we hypothesize that as the load increases, large instance
types have more opportunity to get stuck in CPU intensive or write intensive tasks later in the test
sequence, neglecting smaller tasks in the process. This results in a lower amount of 200 responses
overall.

23

Fig 4.8 HTTP response status with t3 instance types

We also tested three different burstable instance types: t3.small ($0.02/hr), t3.medium
($0.04/hr), and t3.large ($0.08/hr). Regardless of the instance type, the rate of 200 response is
capped at around 180 per second.

We suspect the similarity in performance is partly due to the nature of t3 machines - t3 is a
burstable instance type, meaning it can temporarily boost to 100% cpu utilization by using CPU
credits. While each tier accumulate CPU credit at different rates, they are all able to boost to
100% given about 15 minutes of idle time.

We initially used t3.micro to run our application but we had to move to t3.small due to running
out of memory. It seems that the 2 GiB of memory offered by t3.small is sufficient for our app.
However, additional memory did not improve performance so we can conclude that memory is not
a limited resource after 2 GiB.

24

Horizontal scaling

Fig 4.9 Response status code of requests with different amount of instances

Horizontal scaling achieved better performance compared to vertical scaling. We compared our
baseline environment of 1 c5.large instance ("single") against environment of 2 ("x2"), 4 ("x4"),
and 8 ("x8") c5.large instances behind a load balancer. Compared to vertical scaling, horizontal
scaling provides almost identical increase in performance between the bottom two tiers. However,
x4 and x8 performed much more consistently on high loads as compared to c5.2xlarge and
c5.4xlarge.

It is also worth noting that x8 did not achieve a significant increase over x4, despite it having
twice as many instances.

25

5 Conclusion
In this project, we learned how to build a social network that borrows ideas from many existing
platforms. Next, we learned how to deploy this onto Amazon Web Services (AWS) Elastic
Beanstalk (EB) which allows for dynamic creation of configurable virtual machine instances.
Afterwards, we learned how to use the Tsung to simulate high traffic of users visiting our site.
Using both Tsung and EB, we were able to run many tests of various optimizations to the
application as well as traditional vertical and horizontal scaling of the application servers. Many
times, we saw results that were unexpected which forces us to think about how our assumptions
were misguided. As a learning exercise, this project was very successful across all fronts.

Performance-wise, the application shows clear growth for some optimizations, the largest being
pagination. We also observed that there are diminishing returns on some optimizations such as
vertical scaling, where t3.small has sufficient memory and anything larger is negligible, but almost
linear scaling for horizontal scaling.

In the future, we could try different configurations of the database server similar to how to
experimented horizontal and vertical scaling of our application servers. Furthermore, we could
store images on Amazon Simple Storage Service (S3) to alleviate image requests from the server
since S3 is well suited for sending and receiving files. To alleviate the processing time required to
complete a database request, we can serve less data to the user initially and then provide the data
to the user via subsequent Ajax requests.

26

